University Modern Physics

with simulations used

(See activities by Sam McKagan in PhET database)

- 1. Review of EM Waves Radio Waves and Electromagnetic Fields
- 2. Photoelectric Effect: Photoelectric Effect
- 3. Probability and Randomness and Wave particle duality Quantum Wave Interference
- 4. Rutherford Scattering Rutherford Scattering
- 5. Atomic Spectra and Discharge Lamps Discharge Lamps
- 6. Lasers
 - Lasers
- 7. Balmer Series
- 8. Bohr and deBroglie Models of the atom

The Hydrogen Atom

9. Double slit and Davisson Germer experiment

Quantum Wave Interference, Davisson Germer: Electron Diffraction

- 10. Wave functions and probability
- 11. Wave packets and uncertainty principle

Quantum Wave Interference, Quantum Tunneling, Fourier: Making Waves

- 12. Wave equations and Differential equations
- 13. Schrodinger equation for free particle

Quantum Tunneling

- 14. Potential Energy
- 15. Infinite and Finite Square Wells

Quantum Bound States

16. Quantum Tunneling, Alpha decay and other applications of Tunneling

Quantum Tunneling

17. Reflection and Transmission

Quantum Tunneling

18. Superposition, measurement, and expectation values

Quantum Bound States

19. Hydrogen atom

The Hydrogen Atom, Rutherford Scattering

- 20. Multielectron atoms
- 21. Molecular bonding and solids

Quantum Bound States/Double Wells and Covalent Bonds/Band Structure

22. Conductivity

Conductivity

23. Diodes and LEDs

Semiconductors

- 24. CCDs
- 25. Lasers Cooling and BEC

Physics 2000 (http://www.colorado.edu/physics/2000/)

- 26. Spin and MRI
 - Stern Gerlach Experiment, Simplified MRI
- 27. EPR paradox