	Square Roots $\underbrace{}_{\text {Algebra2go }}$
Objective 1	understand the meaning of a square Root
	What does it mean to square a number?
	If we square 8 , we have $8 \cdot 8=8^{2}=64$.
	If we square root 64, we get 8. The
	mathematical symbol for square root is $\sqrt{ }$
	We also call it a radical.
	Note: It is note the long division symbol)
	The mathematically statement $\sqrt{64}$ is
	asking us "what is the square root of 64". In
	other words, "what positive number do you
	square to get 64".
	There are actually two integers you can
	square to get 64. These are -8 and 8. But the
	square root function only gives the "principal
	root". Which means the square root of a number
	is always posítive.
	Finally, we can make the statement
	$\sqrt{64}=8$
Page 1 of 6	

	$\underbrace{\text { @ }}_{\text {Algebrazgo }}$
	The Pythagorean Theorem states,
	$a^{2}+b^{2}=c^{2}$
	Where a and b represent the lengths of the
	legs of the triangle (in no particular order)
	and c represents the length of the hypotenuse.
	The side lengths of any right triangle must
	satisfy the theorem. If the side lengths do not,
	then it is not a right triangle!
	Example 2: Show that the triangle below is a
	right triangle using the Pythagorean Theorem.
	Let $a=5, b=12$, and $c=13$.
	$a^{2}+b^{2}=c^{2}$
	12 ft (13ft $5^{2}+12^{2}=13^{2}$
	$25+144=169$
	$169=169 \checkmark$
	$\checkmark \quad \begin{aligned} & \text { The Pythagorean Theorem is satisfied, } \\ & \text { thereferethis in }\end{aligned}$
	5 ft right angle is located dopposite the
Page 5 of 6	nypotenuse which is 13 fi in length.

