	Algebra2go®
	Reducing Fractions
Objective 1	Write a Fraction in Lowest Terms (Reducing)
	Note: A fraction is written in lowest terms or reduced when the numerator and denominator have no common factors other than 1.
	Let's begin with the fraction $\frac{3}{8}$. In this case,
	both the numerator 3 and denominator 8 have
	no common factors other than 1. Therefore,
	this fraction is in lowest terms.
	Now let's look at $\frac{6}{8}$. Here, the numerator
	and denominator have a common factor of 2.
	To reduce this fraction we divide out the
	common terms between the numerator and
	denominator. $\frac{6}{8} = \frac{6 \div 2}{8 \div 2} = \frac{3}{4}$
	Notice that dividing both the numerator and
	denominator by the same factor results in an
	equivalent fraction!
	In some cases, we may have to divide out
	common factors more than once to reduce the
	fraction to lowest terms.
Page 1 of 5	

	Algebra2go®
	Let's take a look at the fraction $\frac{28}{42}$. It may not
	be obvious that 28 and 42 have a common factor of 14. Since they are both even numbers
	we can begin by dividing out the common factor of 2. $\frac{28}{42} = \frac{28 \div 2}{42 \div 2} = \frac{14}{21}$
	Sínce 14 and 21 both have a common factor of 7, the fraction $\frac{14}{21}$ is not written in lowest
	terms. Therefore we divide out the common
	factor of 7. $\frac{14}{21} = \frac{14 \div 7}{21 \div 7} = \frac{2}{3}$ Since 2 and 3 have no common factors other
	than 1, we can now state that $\frac{28}{42}$ is now written in lowest terms as the equivalent fraction $\frac{2}{3}$.
	Sínce we separately dívíded out a common
	factor of 2 and 7 , this means that $2 \cdot 7$ or 14 is a common factor of 28 and 42. Therefore, the original fraction $\frac{28}{42}$ could have been
	reduced in one step using the common factor of
Page 2 of 5	14. $\frac{28}{42} = \frac{28 \div 14}{42 \div 14} = \frac{2}{3}$

Recall that
$$-21 \div 3 = -7$$
. When writing this
quotient using a fraction bar, we have $\frac{-21}{3}$.
Dividing out the common factor of 7, we get the
following result.
 $-21 = -21 \div 3 = -7$
 $3 \div 3 = -7$
 $1 = -7$ Suppose we were given $21 \div (-3)$ which also
equals -7 . Using a fraction bar we have the
equation $\frac{21}{-3} = -7$.We can see that $\frac{-21}{-3} = \frac{-21}{-3} = -7$. Therefore,
whenever we have one negative sign in either
the numerator or denominator (not both), we
can move it to the front of the fraction to
indicate a negative answer. $-21 = 21 - 3 = -7$ Answer the following homework questions.
 $1) \frac{6}{20}$
 $2) \frac{6}{51}$ $1) \frac{6}{20}$
 $2) \frac{6}{52}$ $2) \frac{8}{52}$
 $2) \frac{8}{52}$ $2) \frac{8}{52}$
 $2) \frac{8}{52}$ $2) \frac{8}{52}$
 $2) \frac{8}{52}$ $2) \frac{8}{52}$
 $2) \frac{8}{52}$ $2) \frac{8}{52}$
 $4) \frac{6}{54}$ $2) \frac{8}{52}$
 $4) \frac{6}{54}$ $2) \frac{8}{52}$ $3) \frac{6}{54}$ $6 = 21$ $2) \frac{8}{52}$ $2) \frac{8}{52}$ $3) \frac{6}{54}$ $4) \frac{6}{54}$ $5) \frac{6}{54}$

	Algebra2go®
	Let's now reduce a fraction without writing a division symbol. Suppose we are asked to reduce $\frac{8}{10}$. Since 8 and 10 are both divisible by 2, we will divide out this common factor using
	the following notation. $\frac{8}{10} = \frac{8^4}{10} = \frac{4}{5}$ Here it is understood that you are dividing out a common factor of 2.
	Below is the same process without writing down a division symbol. $\frac{8}{10} = \frac{8 \div 2}{10 \div 2} = \frac{4}{5}$
Objectíve 2	10 10÷2 5 Reducing Fractions that have variables
	Let's begin with the fraction $\frac{8x^3}{x^2}$. Remember that exponents are used to represent repeated multiplication. Therefore $\frac{8x^3}{x^2} = \frac{8 \cdot x \cdot x \cdot x}{x \cdot x}$.
	Since $\frac{x}{x} = 1$, we can cancel variable terms as follows. $\frac{8x^3}{x^2} = \frac{8 \cdot \frac{1}{x} \cdot \frac{1}{x}}{\frac{1}{1}} = \frac{8x}{1} = 8x$
Page 4 of 5	Notice that when cancelling variable terms, they get replaced with 1's.

Algebra2go Suppose we were given $\frac{20n^2}{6n^5}$. Again remember that exponents are used to represent repeated multiplication. Therefore we use the following notation to reduce the fraction to Lowest terms. $\frac{20n^2}{6n^5} = \frac{20 \cdot n \cdot n}{6 \cdot n \cdot n \cdot n \cdot n \cdot n} = \frac{10}{3 \cdot n \cdot n \cdot n} = \frac{10}{3n^3}$ Answer the following homework questions. In Exercíses 7 - 15, write each fraction in lowest terms. \neq) $\frac{15}{20}$ 10) $\frac{3a}{3b}$ 13) $\frac{2xy}{8xyz}$ 8) $\frac{80}{24}$ 11) $\frac{4xy}{-4y}$ 14) $\frac{3a^2b^3}{ab}$ 15) $\frac{7a^2b^3c^5}{63ab^4c^7}$ 9) $\frac{12}{52}$ 12) $\frac{5a}{-5ab}$ Page 5 of 5