	Multiplying Fractions
objective 1	Perform Multiplication with Fractions
	Recall that multiplication represents
	repeated addition of the same quantity.
	$\frac{1}{2} \cdot 6=\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}=3$
	We can also write the 6 as an improper
	fraction $\frac{6}{1}$ and multiply. We will reduce by dividing out a common factor of 2 .
	$\frac{1}{2} \cdot \frac{6}{1}=\frac{\overrightarrow{1}}{2} \cdot \frac{6}{1}=\frac{1 \cdot 6}{2 \cdot 1}=\frac{6}{2}=\frac{\frac{8}{8}}{1}=\frac{3}{1}=3$
	Notice how we multiply $\frac{1}{2}$ to $\frac{6}{1}$. We multiply straight across the numerators and straight across the denominators.
	Whenever we are multiplying fractions
	together we can use a technique called "oross-
	cancelling", but it is very important that you
	remember that this technique can only be used
	when multiplying fractions together!
	$\frac{1}{2} \cdot \frac{6}{1}=\frac{1}{2} \cdot \frac{Q^{3}}{1}=\frac{3}{1}=3 \quad \begin{aligned} & \text { Here it is understood that you are } \\ & \text { dividing ount a common factor of } 2 \\ & \text { before multiplying. } \end{aligned}$
Page 1 of 3	

	$\underbrace{\text { © }}_{\text {Algebrazgo }}$
	Recall that exponents are used to represent
	repeated multiplications.
	Example 1: Simplify each expression.
	a) $\left(-\frac{1}{2}\right)^{2}-9\left(\frac{1}{3}\right)^{2} \quad$ b) $\left(\frac{1}{2}\right)^{2} \cdot 8+\left(\frac{2}{3}\right)^{2} \cdot 9$
)-9 $(\square) \cdot 8+() \cdot 9$
	$-\frac{1}{8}-9 \cdot \frac{1}{9} \quad \frac{1}{4} \cdot 8+\frac{1}{9} \cdot 9$
	Answer the following homework questions.
	In Exercises 10-15, simplify each expression.
	10) $\left(\frac{1}{2}\right)^{2} \cdot 8$ 12) $\left(\frac{3}{2}\right)^{3} \cdot \frac{8}{9}$ 14) $3 \cdot\left(\frac{7}{3}\right)^{2} \cdot \frac{5}{21}$
Page of 3	11) $-\frac{2}{3}\left(\frac{7}{6}\right) \quad$ 13) $16\left(\frac{5}{4}\right)^{2} \cdot \frac{7}{25} \quad$ 15) $-\left(\frac{1}{2}\right)^{2} \cdot \frac{5}{6} \cdot 16$

