	Division with Fractions
Objective 1	Perform Division with Fractions
	suppose we are given the problem $4 \div \frac{1}{3}$
	This problem is asking you how many
	one-thirds will go into a 4?
	consider the number lines below. Notice that
	it takes "twelve-thirds" or $\frac{12}{3}$ to make a 4.
	$\begin{array}{llllllllllllll} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ \frac{0}{3} & \frac{1}{3} & \frac{2}{3} & \frac{3}{3} & \frac{4}{3} & \frac{5}{3} & \frac{6}{3} & \frac{7}{3} & \frac{8}{3} & \frac{9}{3} & \frac{10}{3} & \frac{11}{3} & \frac{12}{3} \end{array}$
	We can demonstrate this visually using the
	following diagram.
	following diagram.
	We can see there are 12 one-thirds in 4-wholes,
	where each whole contains 3 one-thirds.
	We can arithmetically calculate $4 \div \frac{1}{3}$ by multiplying 4 by the reciprocal of $\frac{1}{3}$. The reciprocal of $\frac{1}{3}$ represents the number of one-thirds in 1 whole. The reciprocal of $\frac{1}{3}$ $\text { is } 3 \text { since there are } 3 \text { one-thirds in 1whole. }$
Page 1 of 3	

Example 2: Dívide.

a) $\frac{\overline{6}}{\frac{4}{5}}$
b) $\frac{\frac{x y^{2}}{z}}{\frac{y}{z}}$
c) $\frac{\frac{3 a}{5 b^{3}}}{\frac{a^{3}}{10 b^{2}}}$
$\frac{7}{6} \div \frac{4}{5}$

$$
\frac{x y^{2}}{z} \div \frac{y}{z}
$$

Answer the following homework questions.
in Exercises 10-15, perform the indicated operations.
10) $4 \div \frac{1}{2}$
11) $\frac{1}{2} \div 4$
12) $\frac{4}{9} \div\left(-\frac{2}{3}\right)+\frac{4}{3}$
13) $\frac{7}{10} \div \frac{1}{4}-\frac{2}{5}$
14) $3 \div 6 \cdot \frac{1}{2}$
15) $3 \div\left(\frac{3}{4}\right)^{2} \div 6$

