|  | More with Fractions |
| :---: | :---: |
| Objective 1 | Add and Subtract Fractions with Different |
|  | Denomínators |
|  | Remember: in order to add or subtract fractions the denominators must be the same. |
|  | Let's begin by working the problem $\frac{2}{3}+\frac{1}{4}-\frac{5}{6}$. in order to perform the indicated operations |
|  | of addition and subtraction, we must rewrite each fraction as equivalent fractions having |
|  | the same denominator. |
|  | We begin by first finding the Least |
|  | common Denominator (LCD) of all three |
|  | fractions. The LCD can simply be thought of |
|  | as the smallest number that all your |
|  | denominators divide evenly into. $\frac{2}{3}+\frac{1}{4}-\frac{5}{6}$ |
|  | Here our denominators our 3, 4, and 6. The |
|  | smallest number that 3,4 , and 6 divide |
|  | evenly into is 12. Therefore 12 is the LCD. |
|  | Note: The LCD is never smaller than the largest denominator. In fact, it is always a multiple of the largest denominator. |


|  | $\underset{\text { Algebra2go }}{\left(®_{0}^{\circ}\right.}$ |
| :---: | :---: |
|  | Another method of finding the LCD is to |
|  | find the Least common Multiple (LCM) of the |
|  | denominators. A simple way of doing this is to make a list of multiples of the denominators to |
|  | find the lowest common multiple. This |
|  | quantity will be the LCD. |
|  | For the problem $\frac{2}{3}+\frac{1}{4}-\frac{5}{6}$, we will make list |
|  | of multiples for 3, 4, and 6 starting with the largest denominator. |
|  | $6: 6,12,18,24,30,36, \ldots$ |
|  | $4: 4,8,12,16,20,24,30, \ldots$ |
|  | $3: 3,6,9,12,15,18,21,24, \ldots$ |
|  | Notice that 12 is the lowest common |
|  | multiple and therefore 12 is the LCD. |
| Pagez of 5 | Note: When the denominators involve very large numbers, making a list of common multiples can be very time consuming. In these cases, using prime factorization to find the LCD may be a better approach. This method will be covered in a later section. |

For the problem $\frac{2}{3}+\frac{1}{4}-\frac{5}{6}$ we have the $L C D=12$. To rewrite each fraction as an equivalent fraction with a denominator of 12, we must multiply each fraction by an appropriate factor of 1 .

$$
\begin{gathered}
\frac{2}{3}+\frac{1}{4}-\frac{5}{6} \\
\frac{2}{3}(-)+\frac{1}{4}(-)-\frac{5}{6}(-) \\
\frac{8}{12}+\frac{3}{12}-\frac{10}{12} \\
\frac{+-}{12}
\end{gathered}
$$

$$
\overline{12}
$$



|  |  |
| :---: | :---: |
|  | Answer the following homework questions. |
|  | In Exercises 1-12, perform the indicated operations. |
|  | 1) $\frac{3}{4}+\frac{2}{5}$ <br> 5) $\frac{3}{12}-\left(-\frac{1}{2}\right)^{3}$ <br> 9) $\frac{2}{7}-\frac{2}{9}-\frac{2}{21}$ |
|  | 2) $\frac{3}{4}+\frac{2}{5}-\frac{1}{10}$ <br> 6) $\frac{1}{8}-\left(-\frac{3}{4}\right)^{2}$ <br> 10) $\left(-\frac{2}{3}\right)^{2}-\left(-\frac{2}{3}\right)^{3}$ |
|  | 3) $\frac{5}{9}-\left(-\frac{1}{6}\right)$ <br> 7) $-\frac{3}{8}-\frac{2}{6}+\frac{1}{3}$ <br> 11) $\frac{6}{25}-\frac{2}{15}$ |
|  | 4) $\frac{4}{3}+\frac{1}{t}$ <br> 8) $2 \frac{3}{5}+\frac{1}{2 h}$ <br> 12) $\frac{3}{40}+\frac{5}{36}$ |
|  | $(L C D=3 t) \quad(L C D=10 h)$ |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
| Page 5 of 5 |  |

