	Multiplication with Negative Numbers
objective 1	Understand why a "Negative times a Positive" or "Posítive times a Negative" is Negative Remember that multiplication represents
repetitive addition of a number.	
Recall: $3 \cdot 4=3+3+3+3=$	
A "positive times a positive" will always	
represent a positive number since we are	
summing positive quantities.	

	$\underbrace{@}_{\text {Algebra2go }}$			
	We can now make a general conclusion that negative times a negative wíll be posítive!			
	To summarize things, we wíll look at a pattern that occurs in the columus below.			
	$1 \cdot 2=2$	$(-1) \cdot 2=-2$	$1 \cdot(-2)=-2$	$(-1) \cdot(-2)=2$
	$2 \cdot 2=4$	$(-2) \cdot 2=-4$	$2 \cdot(-2)=-4$	$(-2) \cdot(-2)=4$
	$3 \cdot 2=6$	$(-3) \cdot 2=-6$	$3 \cdot(-2)=-6$	$(-3) \cdot(-2)=6$
	$4 \cdot 2=8$	$(-4) \cdot 2=-8$	$4 \cdot(-2)=-8$	$(-4) \cdot(-2)=8$
	When multiplying two numbers with the same sign, the product will be positive. When multiplying two numbers with different signs, the product will be negative.			
	Now let's think about the product of three negative numbers.			
	Working left to right, we get the following:$(-2) \cdot(-2) \cdot(-2)=4 \cdot(-2)=-8$			
Page 3 of 6				

	$\underbrace{\Theta_{0}^{\circ}}_{\text {Algebra2go }}$
	Now let's think about the product of four
	negative numbers.
	$(-2) \cdot(-2) \cdot(-2) \cdot(-2)$
	Working left to right, we get the following: $(-2) \cdot(-2) \cdot(-2) \cdot(-2)=4 \cdot(-2) \cdot(-2)=-8 \cdot(-2)=16$
	We can now state the following conclusion.
	When multiplying an odd number of negative quantities, the product will be negative. When multiplying an even number of negative quantities, the product will be posítive.
	Answer the following homework questions.
	In Exercises 1-15, find each product.
	1) $-8 \cdot(-7)$ 6) $12 \cdot(-8)$ 11) $-5 \cdot(-4) \cdot(-3)$
	2) $5 \cdot(-9)$ 7) -2 14 12) $-2 \cdot(-3) \cdot 8$
	3) $-11 \cdot 12$ 8) $-2 \cdot(-16)$ 13) $4 \cdot(-8) \cdot 10$
	4) $0 \cdot(-5)$ 9) $6 \cdot(-6)$ 14) $2 \cdot(-3) \cdot(-1) \cdot(-4)$
	5) $6 \cdot(-3)$ 10) $-1 \cdot 0$ 15) $-5 \cdot(-2) \cdot(-3) \cdot(-6)$
Page 4 of 6	

objective z	Understand Negative Numbers with Exponents It is important to understand the difference between the two expressions -3^{2} and $(-3)^{2}$.
The expression -3^{2} is read "negative one	
times three squared".	
Therefore -3^{2} is equivalent to $-1 \cdot 3^{2}$.	
Following order of operations and evaluating	
the exponent first before multiplication, we	
find that - 3^{2} is equal to -1.9 or -9.	

Answer the following homework questions.
In Exercises 16-30, find the value of each expression.
Note: Be sure to follow the rules of Order of Operations!
16) 2^{3}
21) $(-3)^{4}$
26) $1-2^{2}$
17) -2^{3}
22) $(-3)^{3}$
27) $4-(-3)^{2}$
18) $(-2)^{3}$
23) -3^{4}
28) $4-3^{2}$
19) -2^{4}
24) -3^{3}
29) $-10^{2}-(-4)^{2}$
20) $(-2)^{4}$
25) $(-1)^{99}$ 30) $-(-2)^{2}-(-3)^{3}$

In Exercises 31-36, find the value of each expression.
Note: Be sure to follow the rules of Order of Operations!
31) $-|-2|^{2}$

$$
\text { 33) }\left|-2^{2}-3^{2}\right|
$$

35) $\left|-4^{2}\right|-\left|-4^{2}\right|$
36) $-3^{2}-|-2|^{3}$
37) $-(-4)^{2}-\left|-2^{3}\right|$
38) $\left|-6^{2}\right|-\left|6^{2}\right|$

Page 6 of 6

