	Algebra2go®				
	Multiplication with Negative Numbers				
Objective 1	Understand why a "Negative times a Positive"				
	or "Posítíve tímes a Negatíve" ís Negatíve				
	Remember that multiplication represents				
	repetítive addition of a number.				
	Recall: 3·4=3+3+3=				
	A " posítíve tímes a posítíve " wíll always				
	represent a posítive number sínce we are				
	summing positive quantities.				
	But a " negative times a positive " implies				
	that we are summing negative quantities. We				
	therefore will always get a negative result in				
	these cases.				
	$-3 \cdot 4 = (-3) + (-3) + (-3) + (-3) =$				
	$-5 \cdot 3 = (-5) + (-5) + (-5) =$				
	$-1 \cdot 6 = (-1) + (-1) + (-1) + (-1) + (-1) + (-1) =$				
	By the Commutative Property we can state				
	$-3\cdot 4 = 4\cdot (-3).$				
	So we can conclude that a "positive times a				
Page 1 of 6	negative" is also negative!				

Algebra2go[®] Example 1: Rewrite the following multiplication problems as equivalent addition problems. Next, find the value of the sum. a) $5 \cdot 4 = 5 + 5 + 5 + 5 =$ b) $-3 \cdot 6 =$ c) -6 \cdot 5 = $d) 4 \cdot (-2) =$ But what about a negative times a negative? Notice that multiplying -1 to a number always results in the opposite of the number! $-1 \cdot 2 = (-1) + (-1) = -2$ $-1 \cdot 3 = (-1) + (-1) + (-1) = -3$ $-1 \cdot 4 = (-1) + (-1) + (-1) + (-1) = -4$ So what happens if we multiply -1 to a negative number? Since the opposite of any negative number is always positive, the result must be positive. $-1 \cdot (-2) = 2$ $-1 \cdot (-3) = 3$ $-1 \cdot (-4) = 4$ Page 2 of 6

	Algebra2go®			
	We can now make a general conclusion that negative times a negative will be positive!			
	To summaríze things, we will look at a pattern that occurs in the columns below.			
	$1 \cdot 2 = 2 (-1) \cdot 2 = -2 1 \cdot (-2) = -2 (-1) \cdot (-2) = 2$ $2 \cdot 2 = 4 (-2) \cdot 2 = -4 2 \cdot (-2) = -4 (-2) \cdot (-2) = 4$ $3 \cdot 2 = 6 (-3) \cdot 2 = -6 3 \cdot (-2) = -6 (-3) \cdot (-2) = 6$ $4 \cdot 2 = 8 (-4) \cdot 2 = -8 4 \cdot (-2) = -8 (-4) \cdot (-2) = 8$			
	When multiplying two numbers with the same sign, the product will be positive. When multiplying two numbers with different signs, the product will be negative.			
	Now let's think about the product of three negative numbers. (-2)·(-2)·(-2)			
Page 3 of 6	Working left to right, we get the following: $(-2) \cdot (-2) \cdot (-2) = 4 \cdot (-2) = -8$			

		Algebra2go®
	lk about the pro	duct of four
 negatíve nun		\sim
	$(-2) \cdot (-2) \cdot (-2) \cdot ($	
	to right, we get	
 $(-2) \cdot (-2) \cdot $	$(-2) = 4 \cdot (-2) \cdot (-2)$	$(-2) = -8 \cdot (-2) = 16$
	state the followi <mark>Iltíplying an <u>od</u></mark>	ng conclusion.
	iantíties, the prod	
negatíve. When mi	ultíplying an <u>ev</u> cantíties, the proc	en number of
negative. When minegative que positive.	ultíplyíng an <u>ev</u>	en number of duct will be
negative. When minegative que positive.	ultíplying an <u>ev</u> cantities, the proc e following homen	en number of duct will be
negative. When minegative que positive. Answer the	ultíplying an <u>ev</u> cantities, the proc e following homen	en number of duct will be
negative. When minegative que positive. Answer the In Exercises 1 - 15,	ultíplying an <u>ev</u> cantities, the proc e following homen find each product.	en number of duct will be vork questions.
negative. when minegative quarters $positive.Answer then the second s$	ultíplying an <u>ev</u> antities, the prod e following homen find each product. 6) 12 • (-8)	en number of duct will be vork questions. $11) - 5 \cdot (-4) \cdot (-3)$
$\begin{array}{c} negative. \\ When mine a constraint of the equation of t$	ultíplying an <u>ev</u> antities, the prod e following homen find each product. 6) 12 • (-8) 7) -2 • 14	en number of duct will be vork questions. $11) - 5 \cdot (-4) \cdot (-3)$ $12) - 2 \cdot (-3) \cdot 8$

	Algebra2go®
Objective 2	Understand Negative Numbers with Exponents It is important to understand the difference between the two expressions -3^2 and $(-3)^2$.
	The expression –3 ² is read " negative one times three squared".
	Therefore -3^2 is equivalent to $-1 \cdot 3^2$. Following order of operations and evaluating the exponent first before multiplication, we find that -3^2 is equal to $-1 \cdot 9$ or -9 .
	However, the expression $(-3)^2$ is read "negative three squared". Notice how a set of parenthesis is used to define the negative base.
	Therefore $(-3)^2$ is equivalent to $(-3)(-3)$. In this case, we see that two negatives are being multiplied together. Therefore $(-3)^2$ is equal to $(-3)(-3)$ or 9.
Page 5 of 6	

			Algebra2go®	
	Answert	he following homev	vork questions.	
	In Exercíses 16 – 30, find the value of each expression.			
	Note: Be sure to foll	ow the rules of Order of	Operations!	
	$16) 2^{3}$	21) (-3)4	26) $1-2^2$	
	17) -2 ³	22) $(-3)^3$	27) $4 - (-3)^2$	
	18) (-2) ³	23) -34	28) $4-3^{2}$	
	19) —2 ⁴	24) -3 ³	29) $-10^{2} - (-4)^{2}$	
	20) $(-2)^{4}$	25) (-1) ⁹⁹	30) -(-2) ² - (-3) ³	
	In Exercíses 31 - 30	6, find the value of each	expression.	
	Note: Be sure to foll	ow the rules of Order of	Operations!	
	31) - -2 ²	$33) -2^2 -3^2$	35) -4 ² 4 ²	
	$32) -3^2 - -2 ^3$	$(-4)^2 - -2^3 $	36) -6 ² - 6 ²	
Page 6 of 6				