	Algebra2go®
	Exponents
Objective 1	Understand the Relationship between
	Multiplication and Exponents
	Recall that 3.4 represents an addition problem.
	$3 \cdot 4 = 3 + 3 + 3 + 3$.
	But what about the expression
	3.3.3?
	This is where the exponent is used!
	Exponents are used to represent repetítive multiplication of a quantity.
	Using an exponent of 4, we write $3 \cdot 3 \cdot 3 \cdot 3$ as 3^4 where 3 is called the base and 4 is the exponent.
	Exponent
	Suppose we are given 2^3 . This represents $2 \cdot 2 \cdot 2$ which is equal to 8.
	If we are given X^3 , this represents $x \cdot x \cdot x$.
Page 1 of 5	So what do you think $X^3 \cdot X^4$ is equal to?

ProductProductWell since
$$X^3 = x \cdot x \cdot x$$
 and $X^* = x \cdot x \cdot x \cdot x$ We get the following result. $X^8 \cdot X^4 = x \cdot x = X^7$ Notice how we can just add the exponents. $X^3 \cdot X^4 = X^{3+4} = X^7$ When multiplying two quantities that have the same base, we can add the exponents. $X^2 \cdot X^b = X^{a+b}$ Suppose we are given $X + X + X + X$. Notice that we have four x's being added together.Recall that multiplication is used to represent repetitive addition of the same quantity.Using the Commutative Property for multiplication we can now show that $4 \cdot X = x \cdot 4 = x + x + x = 4x$ Notice that $4x = x + x + x + x = 4x$ Notice that $4x = x + x + x + x$ $A \cdot x = x \cdot 4 = x + x + x + x = 4x$ Notice that $4x = x + x + x + x$ $A \cdot x = x \cdot 4 = x + x + x + x = 4x$ Notice that $4x = x + x + x + x$ $A \cdot x = x \cdot 4 = x + x + x + x = 4x$ Notice that $4x = x + x + x + x$ $A \cdot x = x \cdot 4 = x + x + x + x = 4x$ Notice that $4x = x + x + x + x$ $A \cdot x = x \cdot 4 = x + x + x + x = 4x$ Notice that $4x = x + x + x + x$ $A \cdot x = x \cdot 4 = x + x + x + x = 4x$ Notice that $4x = x + x + x + x = 4x$ Notice that $4x = x + x + x + x = 4x$ Notice that $4x = x + x + x + x = 4x$ Notice that $4x = x + x + x + x = 4x$ Notice that $4x = x + x + x + x = 4x$ Notice that $4x = x + x + x + x = 4x$ Notice that $4x = x + x + x + x = 4x$

			وتوني (Algebra2go®			
	Note: X ³ ís "x cub X ² ís or "x	saíd "x raísed to bed". saíd "x raísed to squared".	the third power" or the second power"			
	Answer the following homework questions.					
	In Exercises 1 – 9, write each quantity in expanded form. Recall: $4x = x + x + x + x$ and $x^4 = X \cdot X \cdot X \cdot X$					
	1) 5 ²	4) a^4	7) ab²			
	2) y^{2}	5) за	8) x ² y ²			
	3) 4y	6) 2x	9) p ³ q ⁴			
	In Exercíses 10 – 18, add or multíply as indicated, if possible.					
	10) 3x + 4x	13) $a^4 \cdot a^3 \cdot a^2$	16) 2h + 2b			
	11) $y^{3} \cdot y^{3}$	14) $W \cdot W^2$	17) $h^{2} + b^{2}$			
	12) зу+зу	15) w + 2w	18) 2c · c ²			
Page 3 of 5						

					Algebra2go®	
Objective 2	unders	tand th	e Zero E	xponent	t	
	what is the value of 2° ?					
	We can arrive at a general conclusion by					
	noticing the following pattern.					
Not exp decre	tice that the bonents are easing by 1!	$2^{4} = 2$ $2^{3} =$ $2^{2} =$ $2^{1} =$ $2^{0} =$	$ \begin{array}{r} \cdot 2 \cdot 2 \cdot 2 \\ 2 \cdot 2 \cdot 2 \\ 2 \cdot 2 \\ 2 \cdot 2 \\ 1 \end{array} $	2 = 16 = 8 = 4 = 2 = 1	Here the numbers are being divided by the base 2 as you move downward!	
	Let's now	w try thí	s with a k	case of 3.		
Not exp decre	tice that the ponents are easing by 1!	$3^{4} = 3$ $3^{3} = 3$ $3^{2} = 3$ $3^{1} = 3$	·3·3·3 3·3·3 3·3 3·3	3= 81 = 27 = 9 = 3	Here the numbers are being divided by the base 3 as you move downward!	
	Reaavd	$*3^{\circ} =$	1 nathaspi	= 1 *	(except for 0)	
Page 4 of 5	you will A base o- divide by	always f o does j zero! C	get the z not work °ís unde	ero power because fined!	r to equal 1! we can never	

			Algebra2go®			
	Answer the following homework questions.					
	In Exercíses 19 – 27, find the value of each expression!					
	Note: In every problem you must first evaluate the quantity with the exponent before performing the arithmetic operation!					
	19) $2^3 + 3^2$	22) 3 ⁴ ·1 ¹²	25) $2^3 \cdot 3^2$			
	20) 3 ² - 12 ⁰	23) $0^{10} \div 7^2$	26) 11 ² - 8 ²			
	21) $4^3 \div 2^3$	24) $10^2 \div 0^3$	27) 5° + 4°			
Page 5 of 5						