$\left.\begin{array}{|l|l|}\hline \text { Objective 1 } & \begin{array}{l}\text { Understand the four steps of Order of } \\ \text { Operations } \\ \text { Problems often have parenthesis, exponents, } \\ \text { and arithmetic operations that we need to } \\ \text { perform in a specific order. WE always work } \\ \text { these problems following the four steps of } \\ \text { Order of operations. }\end{array} \\ \qquad \begin{array}{r}\text { step 1: Perform all the operations within a } \\ \text { parenthesis or other grouping symbols. } \\ \text { step 2: simplify any expressions with } \\ \text { exponents. } \\ \text { step 3: Multiply or divide working left } \\ \text { to right, whichever comes first. }\end{array} \\ \text { step 4: Add or subtract working left } \\ \text { to right, whichever comes first. }\end{array}\right\}$

Example 2: Evaluate each expression.
a) $3^{3}-5^{2} \div 5$
b) $6^{2}-(4-3)^{10}$

Example 3: Evaluate.

$$
7^{2}-\left[\left(4^{2}-5\right)-6\right]+10
$$

|  | $\underbrace{@(\odot)}_{\text {Algebra2go }}$ |
| :---: | :---: |
| objective 3 | understand when Parenthesis are needed |
|  | to define a negative Base. |
|  | When evaluating the expression $-3^{2}$, we must |
|  | pay close attention to what the base is. In the expression $-3^{2}$ the base is positive 3 . This is |
|  | because $-3^{2}=-1 \cdot 3^{2}$ |
|  | Note: $-3^{2}$ is said "Negative one times three squared". |
|  | To correctly evaluate $-3^{2}$, we must follow |
|  | the Order of Operations and evaluate the |
|  | exponent before we multiply by -1. |
|  | $-3^{2}=-1 \cdot 3^{2}=-1 \cdot 9=-9 \quad \text { Negative } \times \text { Postivive }=\text { Negative }$ |
|  | If the base is to be -3 , then parenthesis must |
|  | be used to indicate this. |
|  | $(-3)^{2}=(-3)(-3)=9$ |
|  | Answer the following homework questions. |
|  | In Exercises 1-9, evaluate each expression. |
|  | 1) $4^{2}-(13-10)^{2} \quad$ 4) $3-2^{2} \div 4 \cdot 2 \quad 10{ }^{\text {a }}-5^{2}$ |
|  | 2) $3+4[17-2(5-1)]$ 5) $2^{3}+3^{3} \div 9-2 \quad$ 8) $(-8)^{2}$ |
|  | 3) $5\left[36 \div 2\left(5^{2}-4^{2}\right)\right] \quad$ 6) $48 \div 2^{3} \cdot 9-2^{3} \quad$ 9) $-12^{0}$ |
| Page 3 of 3 |  |

