

	$\underbrace{\text { © }}_{\text {Algebrazgo }}$
	Note: Recall that $x \cdot x=x^{2}$.
	The term cm" is said "centimeters squared" or "square centímeters".
	A parallelogram is a quadrilateral, where opposite sides are both parallel and have the same length.
	The formula for the area of a parallelogram is: $A=b a s e \cdot h e i g h t-o r-A=b \cdot h$
	base
	Example 2: Find the area of the given parallelogram.
Page 2 of 11	

	$\underset{\text { Algebra2go }}{\stackrel{\text { Ev }}{(1)}}$
objective 2	Calculate the Area of a composite Figure in many cases we need to partition our figure so that it consists of familiar shapes such as parallelograms, rectangles, trapezoids, or triangles. The total area is the sum of the individual areas.
	Example 6: Find the area of the figure below. 4 in . 6 in.
	Partition the figure into two
	rectangles. Notice that you only weed the lengths related to the dimensions of each
	individual rectangle.
	$4 \mathrm{in}$.
Page 5 of 11	

$\left.\begin{array}{|c|c|c|}\hline \text { Note: Recall that } x \cdot x \cdot x=x^{3} . \\ \text { Similarly, } f t \cdot f t \cdot f t=f^{3} .\end{array}\right]$

Answer the following homework questions.
in Exercises 1 - 3, fill in the blank to make the statement true.

1) Perimeter has \qquad dimension.
2) Areahas \qquad dimensions.
3) volume has \qquad dimensions.

Note: In Exercises 4 and 5, you will need to find missing side lengths.
4) Find the perimeter and area of the given figure.

All angles are right angles.

5) Find the volume of the given figure.

