	Applications of Proportions			
objective 1	set up and solve Proportion Problems Proportions can be used to solve many different types of problems. Be sure to read the problem carefully and try to estimate what a reasonable answer is. Remember, a proportion is an equation of			
two ratios and we should always write in our				
units when we set up the problem.				
Additionally, make sure the units mirror each				
other on both sides of the equation.		$	$	Example 1: suppose Tache's car can travel 72
:---				
miles on 3 gallons of gas. How many miles				
can Tache's car travel on 12 gallons?				

	$\underbrace{@}_{\text {Algebra2go }}$
	since we are being asked to find out how
	many míles Tache's car can travel, we let our variable x represent these unknown miles.
	Because these unknown miles correspond with
	12 gallons, we can set up our first ratio on the
	left side of the proportion.
	x milles milles
	12 gallons gallons
	On the right hand side of the equation we
	will write in our given ratio. Notice that the
	problem tells us that the car can travel 72
	miles on 3 gallons of gas. This is our given
	ratio. Writing these quantities on the right
	side of the equation completes the setup of our
	proportion.
	x míles 72 míles
	12 gallons $=\frac{3 \text { gallons }}{}$
	We now solve the proportion for x.
	$\times 72$
	$\frac{12}{12}$
Page 20 f 7	

$\left.\begin{array}{|c|c|}\hline \text { We begin by first cross-multiplying. } \\ \frac{x}{12}=\frac{72}{3} \\ \frac{12}{12}=\frac{72}{3} \\ 3 x=864\end{array}\right)$

	Example 4: At 2 PM. Maria's shadow is 8 ft long and she is 5 ft tall. If at this same time, the flag pole casts a shadow that is 8.4 feet long, how tall is the flag pole?

