	Algebra2go®
	The Distributive Property and Expressions
Objective 1	Understand how to use the Distributive
	Property to Clear Parenthesis
	The Distributive Property
	The Distributive Property states that multiplication can be distributed across addition and subtraction.
	x(a+b) = ax + bx
	a(x-y+z) = ax - ay + az
	-a(x-y+z) = -ax + ay-az
	Consider the expression $3(x+2)$. While the
	rules of Order of Operations state we must
	first work on the expression within the
	parenthesis, this cannot be done. The
	expression $x+2$ cannot be simplified since x
	and 2 are not líke terms.
	However, we can remove the parenthesis by
	distributing the 3 using multiplication to
	each term within the parenthesis.
	3(x+2)
	3·x+3·2
Page 1 of 9	3x+6

	Algebra2go®
	The expression $-(x-y+z)$ implies that a "-1"
	is being multiplied to the parenthesis. So
	wríting down $-(x-y+z)$ is the same as
	wríting down $-1(x-y+z)$. The process of
	dístríbuting a negative is shown below.
	-(x-y+z)
	-x+y-z
	In cases where we have an addition or
	subtraction symbol in front of a parenthesis,
	we must develop techniques to remove the
	parenthesis.
	When there is an addition operation in
	front of a parenthesis, we can simply remove
	the parenthesis.
	5 + (x + y - z) = 5 + x + y - z
	But if the first term in the parenthesis is
	negative, we must subtract its opposite! Once
	agaín, remember that adding a negative
	number results in subtracting its opposite!
	5 + (-x + y - z) = 5 - x + y - z
Page 4 of 9	

Provide SubtractionOperation in front of a parenthesis? Considerthe following expression.
$$5 - (x - y + z)$$
In this case we can treat the subtractionsymbol as an addition of a "-1" and write theequivalent expression $5 + (-1)(x - y + z)$.This approach is demonstrated below. $5 - (x - y + z)$ Expression $5 + (-1)(x - y + z)$.This approach is demonstrated below. $5 - (x - y + z)$ Expression $5 + (-1)(x - y + z)$ Expression $5 + (-1)(x - y + z)$ State of the subtraction $5 + (-x + y - z)$ Representation $5 - x + y - z$ Representation $5 - (x - y + z)$ Representation $5 - (x + y - z)$ Representation $5 - (x + y - z)$ Representation $5 - (x + y - z)$ Representation $5 - (x - y + z)$

Algebra2go® Once you have practiced enough you will be able to correctly remove parenthesis without writing down all the steps. Example 2: Simplify the expression by removing the parenthesis and combining like terms. b) a + 2b + (-a + b)a) 3x+y-(x+2y) In some cases we have remove multiple sets of parenthesis before we can combine like terms. See the example below. -3(2x+y)-4(-3x-2y)-3(2x+y)-4(-3x-2y)Here we use the Distributive Property to remove the parenthesis. -6x - 3y + 12x + 8y-6x - 3y + 12x + 8yHere we identify and combine like terms. 6x + 5yPage 6 of 9

 \odot Algebra2go Example 3: Simplify the expression. a) 3(a-2) e) 6(2x+1)-2b) -(a-2) f) -2(3y-3)+4yc) 3 - (a - 2) g) 2(x + 1) + 4(x - 1)d) 3-6(a-2b) h) -3(2x+5)-4(x-2)Page 7 of 9

	Algebra2go®
Objective 2	Find the Value of an Expression given
	the value of the variable Term or Terms
	We use variables to represent unknown quantities. In the expression x+2, the symbol x is the variable term. We cannot solve for x, as x+2 is not an equation, it is an expression. Equations have equal signs and expression do not! We could find the value of the expression if we are given a number to represent the variable. In this case, we say we are evaluating the expression.
	Example 4: Evaluate the following expressions given $x=12$. a) $3x-8$ b) $-x \div 4$ c) $-x^2-44$ 3(12)-8 36-8 28

	Algebra2go®
	Some expressions can have more than one variable. In these cases, you must be given the value of both variables to "find the value" or "evaluate" the expression.
	Example 5: Evaluate the following expressions given that x=3 and y=-2. a) $3x + 2y$ b) $x^2 - y^2$ c) $\frac{x^2}{y^2}$
Page 9 of 9	