|  | The Distributive Property and Expressions |
| :---: | :---: |
| objective 1 | understand how to use the Distributive |
|  | Property to Clear Parenthesis |
|  | The Distributive Property <br> The Distributive Property states that multiplication can be distributed across addition and subtraction. $\begin{aligned} x(a+b) & =a x+b x \\ a(x-y+z) & =a x-a y+a z \\ -a(x-y+z) & =-a x+a y-a z \end{aligned}$ |
|  | consider the expression $3(x+2)$. While the |
|  | rules of Order of Operations state we must |
|  | first work on the expression within the |
|  | parenthesis, this cannot be done. The |
|  | expression $x+2$ cannot be simplified since $x$ |
|  | and 2 are not like terms. |
|  | However, we can remove the parenthesis by |
|  | distributing the 3 using multiplication to |
|  | each term within the parenthesis. |
|  | $3(x+2)$ |
|  | $3 \cdot x+3 \cdot 2$ |
| Page 1 ofg | $3 x+6$ |



|  | $\underset{\text { Algebra2go }}{\stackrel{(1}{\mathrm{N}}}$ |
| :---: | :---: |
|  | When distributing a negative quantity across addition, you end up adding a negative quantity. This is why addition changes to subtraction! Review how to add negative numbers. <br> When distributing a negative quantity across subtraction, you end up subtracting a negative quantity. This is why subtraction changes to addition! Review how to subtract negative numbers. |
|  | Most students do not write out all the steps |
|  | when distributing a negative quantity across addition and subtraction. Most students |
|  | choose to use "Kung Fu math". Try it on the following example. |
|  | Example 1: Apply the Distributive Property to remove the parenthesis. Use "Kung Fu math". |
|  | $\begin{array}{lll}\text { a) }-2(x-4) & \text { c) }-5(-8-t) & \text { e) }-2(x-y+3)\end{array}$ |
|  | $-2 x+8 \quad 40+5 t \quad-2 x+2 y-6$ |
|  | b) $-5(a-2)$ d) $-10(-3-p) \quad$ f) $-4(a-b+3)$ |
| Page 3 of9 |  |



|  | $\underbrace{\text { © }}_{\text {Algebrazgo }}$ |
| :---: | :---: |
|  | What happens when there is a subtraction |
|  | operation in front of a parenthesis? Consider |
|  | the following expression. |
|  | $5-(x-y+z)$ |
|  | In this case we can treat the subtraction |
|  | symbol as an addition of a "-1" and write the |
|  | equivalent expression $5+(-1)(x-y+z)$ |
|  | This approach is demonstrated below. |
|  | $5-(x-y+z)$ |
|  | $5+(-1)(x-y+z)$ <br> Rewrite the subtraction <br> symbol as adding-1. |
|  | $5+(-x+y-z) \quad \begin{aligned} & \text { Distribute the - into } \\ & \text { theparenthesis. }\end{aligned}$ |
|  | $5-x+y-z$ Remove the parenthesis. |
|  | When there is a quantity following the |
|  | subtraction symbol, we use a similar approach. Note that you cannot do $10-8$ because the 8 is being multiplied to the parenthesis. You must |
|  | perform multiplication before subtraction! |
|  | $10+(-8)(x-y+z)$ <br> Rewrite suburact 8 as adding-8. |
|  | $10+(-8 x+8 y-8 z)$ |
|  | $10-8 x+8 y-8 z$ Remove the parenthesis. |
| Page 5 of9 |  |



Example 3: Simplify the expression.
a) $3(a-2)$
e) $6(2 x+1)-2$
b) $-(a-2)$
f) $-2(3 y-3)+4 y$
c) $3-(a-2)$
g) $2(x+1)+4(x-1)$
d) $3-6(a-2 b)$
h) $-3(2 x+5)-4(x-2)$

Page 7 of 9

|  | $\underbrace{@(\odot)}_{\text {Algebra2go }}$ |
| :---: | :---: |
| objective 2 | Find the value of an Expression given the value of the variable Term or Terms |
|  | We use variables to represent unknown |
|  | quantities. In the expression $x+2$, the symbol $x$ is the variable term. We cannot solve for $x$, |
|  | as $x+2$ is not an equation, it is an expression. |
|  | Equations have equal signs and expression do not! |
|  | We could find the value of the expression if |
|  | we are given a number to represent the |
|  | variable. In this case, we say we are evaluating |
|  | the expression. |
|  | Example 4: Evaluate the following expressions |
|  | given $x=12$. |
|  | a) $3 x-8$ <br> b) $-x \div 4$ <br> c) $-x^{2}-44$ |
|  | $3(12)-8$ |
|  | 36-8 |
|  | 28 |
| Page 8 of 9 |  |


|  | some expressions can have more than one <br> variable. In these cases, you must be given the <br> value of both variables to "find the value" or <br> "evaluate" the expression. |
| :--- | :--- |
|  | Example $5:$ Evaluate the following expressions <br> given that $x=3$ and $y=-2$. <br> a) $3 x+2 y$ <br> algebra2go |
| $x^{2}-y^{2}$ |  |

